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Abstract

Traditional farming practices in developing nations often face inefficiencies due to limited access to real-time information on
soil health, weather conditions, and crop growth, resulting in reduced productivity and resource wastage. This review article
summarizes smart agriculture systems that integrate the Internet of Things (IoT) and Machine Learning (ML) to enhance crop
monitoring, optimize resource utilization, and support sustainable farming practices. loT-based wireless sensor networks
(WSNs) enable continuous real-time data collection on environmental and soil parameters, while ML algorithms analyze this
data to support informed decision-making. The experimental results demonstrate that the proposed ensemble-based ML
model achieves high predictive accuracy, validating the effectiveness of combining multiple learning algorithms for smart
agriculture applications. Furthermore, real-time data updates allow farmers to respond promptly to changing field
conditions, thereby minimizing losses and improving overall productivity. The integration of loT and ML establishes a robust,
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data-driven agricultural framework that enhances efficiency, sustainability, and food security.
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1. Introduction

One measure of a country's economic growth is the state of
its agriculture.l'l Agriculture remains the backbone of many
economies, providing food, employment, and raw materials
for industries. However, traditional farming practices often
face challenges such as unpredictable weather, inefficient
resource use, and pest infestations. In recent years, the
integration of Internet of Things (IoT) technologies has
revolutionized the agricultural sector by enabling real-time
monitoring of soil conditions, crop health, and environmental
factors.) Furthermore, Machine Learning (ML) enhances
these systems by analyzing collected data to predict
outcomes such as yield estimation, irrigation needs, and
disease outbreaks, leading to smarter and more sustainable
farming practices.’) While offering fewer environmental

dangers, IoT in agriculture enhances farm management,
lowers waste, and boosts agricultural yields.*! Innovations
like cloud computing, radio frequency identification tags,
communication between machines, sensor networks using
wireless technology, and data analysis are the main reasons
why our food production process is changing.’! IoT is
growing in popularity and operates in real time.l*” By
planning, gathering, identifying, and applying big data and
artificial intelligence to manage systems for services, loT
technology is developing.®!% Conventional farming
techniques often rely on manual observation and experience-
based decision making, which can result in inconsistent crop
yields and resource wastage. Farmers lack timely, data driven
insights into soil moisture, nutrient levels, and pest risks.
There is a pressing need for an automated system that can
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collect, process, and analyze agricultural data to support
intelligent decision-making. To improve agricultural
productivity, machine learning (ML) techniques are used to
analyze such data.l'l' By transforming unprocessed
agricultural data into useful knowledge, machine learning
(ML) in smart agriculture increases productivity, lowers
expenses, and guarantees sustainability. It is a major
facilitator of contemporary precision farming since it
facilitates automation, resource optimization, and predictive
analytics.["?l Additionally, combining machine learning and
data analysis methods expands crop prediction's potential.['3]
Large datasets are processed effectively by these algorithms,
which also adjust to changing circumstances to continuously
increase forecast accuracy. In this regard, machine learning
becomes an effective instrument for combining multi-
dimensional data sources, including weather information,
satellite imagery, and assessments of soil condition.!'*! The
confluence of loT-enabling algorithms for learning in
agriculture represents an evolutionary step toward precision
farming, enabling immediate tracking, accurate forecasting,
and sustainable resource usage.'> This study focuses on the
development of a prototype smart agriculture system
designed for small- to medium-sized farms. The IoT network
is limited to sensors measuring temperature, humidity, and
soil moisture. Machine learning models are trained using
sample datasets and tested under controlled conditions.!'®!7)

1.1 Importance of agriculture in global economy and food
security

In many growing and developing nations, agriculture is a
vital industry that frequently accounts for 15-30% of GDP.
In addition to providing livelihoods and trade, agriculture is
the cornerstone of worldwide food security, ensuring that
there will always be an adequate supply of wholesome food
available to present and future generations.' Agriculture is
one of the main drivers of economic stability and growth,
employing over 65% of the working population worldwide,
according to the World Bank. While it supports sectors like

food processing, textiles, and trade in developed countries,
agriculture continues to be a major source of revenue and a
crucial sector for reducing poverty in developing
countries.!'”)

1.2 Role of IoT in precision farming and productivity
improvement

Increasing crop yield and creating an intelligent cropping
system are the goals of precision farming. Precision farming
is the intelligent use of agricultural resources and
information using communication and sensing technologies
to maximize financial return and production.?”) Wireless
sensor networks and precision farming transform the
agricultural industry into a technological path for increasing
agricultural output with the least amount of human labor. The
utilization of sensor networks that are wireless in precision
agriculture will provide farmers with a multitude of
information, such as energy harvesting techniques, wireless
communication technologies, and the hierarchy of energy
efficiency.?'! AIML enables precision farming by enabling
farmers to make information-driven choices to reduce waste
through real-time weather, crop, and soil monitoring.
information about soil, weather, and crops.?? Recent
developments in systems for irrigation have introduced
agricultural irrigation instruments, motion manipulation,
satellite devices, imaging technologies, and wireless
connections, which track both environmental and soil
conditions and assess irrigation parameters, like flow and
pressure, to improve farm water utilization efficiency.??*!

1.3 Need for ML to analyse sensor data and predict
outcomes

Machine learning, which may be applied in agriculture to aid
in identification of diseases, crop monitoring, and decision-
making, is a key component of intelligent farming.** These
smart devices intelligently move the collected data to
designated storage places.>>? A controller can understand
the electrical signals that these sensors convert from physical
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Fig. 1: Global challenges in agriculture (Population Vs Food Demand).
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quantities with the help of machine learning.?”! To bridge the
gap, sensor-driven agriculture needs machine learning (ML)
to transform raw data into information that can be put to use.
In agricultural data, machine learning finds hidden patterns,
correlations, and anomalies.”®! Consequently, combining
machine learning with sensor-driven agriculture turns
unprocessed data into useful insights that allow for reliable
forecasting that raises revenues, lowers expenditures, and
supports sustainable farming methods.”’

1.4 Research gaps in existing smart agriculture systems
Effective integration and evaluation of agricultural data
produced by various Internet of Things devices, satellites,
drones, and weather stations is difficult due to their lack of
standardization. Even though machine learning algorithms
are used to schedule irrigation, detect illnesses, and predict
production, their performance can occasionally be reduced
by noisy, imbalanced, or incomplete records.?! The
scalability of smart agricultural systems in large, diverse, and
resource-constrained ~ farming  contexts is  rarely
demonstrated, despite the fact that many of them are tested
on prototype or small-scale companies.’!l The spread of
connected farming tools increases the risk of cyberattacks
and the inappropriate use of private agricultural data, an
understudied problem.B?! In order to create smart farming
methods that are more effective, scalable, and able to
guarantee a reliable food supply in the face of changing
environmental and socioeconomic challenges, it is crucial to
identify and close such research gaps.**! The picture below
illustrates the problems and advancements in global food
security by highlighting the relationship between the world's
growing population, rising food supplies and crop prices, and
the main crops that contribute to global food energy.*
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Fig. 2: Growth of IoT applications in agriculture (2015-2025).

2. Literature review
Managing spatial, temporal, and environmental factors to
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enhance output and raise an agriculturist's production and
profitability is the focus of smart agriculture.'! Every
environmental factor varies from one place to another,
including soil properties, weather, water availability,
fertilizers, humidity, and temperature.’> Due to the losses
they have incurred, farmers face significant obstacles when
considering quitting farming. In order to generate greater
outputs, smart farming efficiently and effectively employs
fewer inputs.’! The two main trends are loT sensors and
machine-learning methods.*! Numerous studies emphasize
how crucially the massive amount of data collected by IoT
devices must be handled and processed using analytics for
big data and cloud computing. These technologies enable
real-time decision-making and predictive analytics for
proactive agriculture.’) Automation and Robotics: Using
Internet of Things-driven robots for tasks like pest
management, weeding, and spraying is another well-liked
tactic.’! Drone Use: Some studies investigate the use of
drones and the Network of Things to optimize irrigation,
monitor agricultural health, and conduct surveillance.!”

2.1 Databases used

The division of agriculture during exams determines the
aspects that impact data gathering in the sector of agriculture.
Crop productivity in hunting and crop farming is impacted
by a number of factors.[®! Such a model aids in understanding
how crucial it is for crops to receive adequate water.
Depending on their stage of growth, different crops require
varied amounts of water. Monitoring rainfall aids in
scheduling crop watering. Every crop grows optimally in a
certain range of temperatures.”” When selecting crops and
determining when to plant them, it's critical to understand
how temperatures vary throughout the day. Crop growth can
also be impacted by humidity, particularly in relation to
diseases.['” Farmers can tell when & just how much water
supply is needed by using soil moisture monitors. The soil
requirements of various crops vary. IoT based systems,
sensor networks, machine learning applications, hardware
and software integration, literature reviews, citation analysis,
and pinpointing research trends are all common applications
in smart agriculture. Plant biology, crop disease detection,
agricultural biotechnology, and machine learning for plant
health are also included in this.!'!

2.2 Keywords

[oT Agriculture: In agriculture, networked technologies such
as monitoring devices, autonomous aircraft, and intelligent
systems of irrigation are used to collect real-time data on
crops, soil, and environmental factors.['? Smart Farming:
This refers to the incorporation of cutting-edge technologies
into conventional farming methods, including robotics,
drones, Al, machine learning, and the Internet of Things.!"*
It emphasizes automation, sustainability, resource
optimization, and precision agriculture. Farmers can more
effectively monitor, forecast, and manage farming operations
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Fig. 3: Literature selection flowchart (PRISMA-style).['”]
Table 1: Summary of reviewed papers.
Title Year Application Method Key Finding
Machine Learning 2022 Optimized irrigation ML models (Random predicted irrigation needs reduced water
for Smart Irrigation scheduling Forest, Neural Networks)  usage by 25% without affecting yield.
Smart Agriculture 2021 Crop monitoring and IoT sensors + Machine Real-time monitoring improves yield
Using IoT and ML yield prediction Learning models (SVM, prediction accuracy; reduced resource
RF) wastage.
IoT-based Precision 2020 Soil moisture and IoT sensors + Data Automated irrigation based on sensor
Farming System temperature monitoring  Analytics data increased water efficiency by 30%.
Deep Learning for 2019 Disease identification Convolutional Neural CNN models achieved 95% accuracy in

Plant Disease

Networks (CNN)

detecting common crop diseases from

Detection

leaf images.

thanks to smart farming.'¥ ML in Agriculture: Large
amounts of agricultural data gathered by sensors, satellites,
and drones are analyzed using machine learning
algorithms.[™! Crop production, disease outbreaks, soil
health, and irrigation requirements can all be predicted using
ML models.l'" In order to transform unprocessed data into
insights that farmers can use, algorithms like Random
Forests, Support Vector Machines (SVM), and Deep
Learning are essential.l'”! Crop Prediction: Using information
gathered from IoT devices, satellite imaging, weather data,
and historical agricultural records, crop prediction forecasts
yield and growth patterns.!'8! Accurate yield estimations can
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be produced by fusing loT and ML, which aids in market
forecasts, sustainable agricultural methods, and food security
planning.['}

3. IoT-based smart agricultural systems

IoT-based smart agricultural systems enable the integration
of computers with a wide range of internet-connected
devices. Things such as sensors, transducers, actuators,
utilities, and other network-enabled devices, can now be
linked through the Internet of Things (IoT) paradigm.?*) Web
services function as a programming layer protocol that
allows end users to interact with management, operations,
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functionalities, and communication interfaces. A design that
promotes interoperability ensures seamless communication
and integration across different components, devices, and
platforms, thereby enhancing the efficiency and reliability of
smart agriculture systems.2!]

3.1 Sensors

The sensors form the foundation of the system. They are
positioned across the agricultural field to capture crop-
related and environmental data in real time."??! Gateway: The
gateway serves as a link between the sensors and the cloud.
It collects data from several sensors, analyzes it if needed,
and then securely transmits it to the cloud. Communications
technologies include cellular networks, Wi-Fi, Zigbee, and
LoRa.?I It carries out tasks including combining data from
several sensors and cutting down on unnecessary transfers to
conserve bandwidth and electricity.? Cloud: Ultilizing
cutting-edge computing techniques, the cloud serves as the
primary location for storing, processing, and analysing the
gathered data.®! carries out tasks like safely storing vast
amounts of farm data. incorporating outside data, including
weather predictions.*! Farmer Interface: The end-user layer
that provides farmers with accessible access to the data being
processed is known as the farmer interface.?” carries out
tasks such giving individualized advice on irrigation,
applying nutrients, and pest control, as well as supplying
real-time assessment of soil, crop, as well as weather
conditions.?"]

3.2 Layers
Devices, Sensors and Microcontroller: Layer 1 is made up of
devices, sensors, and microcontrollers; Layer 1 is always

Datacenter

where the architecture starts.?! This layer includes smart
gadgets like digital glasses, electronic watches, various
actuators, sensors, and smartphones, as well as industrial
robots, PLCs, advanced robotics, and other microcontrollers.
The relationship between people and robots is enhanced by
these devices.B?

Network, Communication, Protocols: The raw data gathered
from the preceding layer is transformed into actionable
information by this layer. This layer is more powerful than
its predecessor because it is where foundation stations or
gateways are developed.’l Sending protocol-based
notifications to production equipment is one example from
the real world. Even developers can add more scientific
capabilities with tools, for example, AWS Lambda function
calls.;??

Cloud Infrastructure: Using a variety of data analysis
techniques, the information gathered from multiple sources
is arranged in this layer based on requirements.’] Because
the acquired data is stored as needed, the information that has
been processed is original. Cloud services concentrate on a
single location where customers can apply analysis to data
that has already been prepared. End users can save both
organized and unstructured data at any time with these
services. Connected data and connected services are
examples of region-based data resources. These techniques
facilitate the reuse of web- or cloud-based data and
services.[3¥!

Big Data Analysis: There is a possibility of producing a lot
of data when linked to the Internet of Things, which needs to
be analyzed in many ways. Big data may require
modifications to new optimizers or algorithms.
Connecting everything on Earth to the internet may seem
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Table 2: 10T devices in agriculture.

IoT Device Parameter Measured

Connectivity Application

Soil Moisture Sensor Soil water content

Temperature & Humidity Air temperature and relative

Sensor (DHT11/DHT22) humidity

pH Sensor Soil pH levels
Nitrogen, Phosphorus,

NPK Sensor

Potassium content

. . Smart irrigation and water
LoRa, Zigbee, Wi-Fi
resource management

S e Monitoring micro-climate for
Wi-Fi, Zigbee, Bluetooth
crop growth

. Soil quality assessment and
Wi-Fi, LoRa . .
fertilizer planning

L Precision fertilization and soil
Wi-Fi, GSM .
nutrient balance

odd, but online services and the Internet of Things will
transform our lives in the future by enabling the impossibly
conceivable.[¢]

3.3 Examples of IoT platforms for agriculture.

Thing Speak: This well-known free-software Internet of
Things application platform is used for agricultural
prototyping and research.’”! Kaa IoT Platform: Kaa is an
independently developed, highly flexible Internet of Things
platform. advantageous for livestock monitoring using smart
irrigation and precision farming, when several sensor nodes
require centralized control.’¥ IBM Watson IoT: This
commercial cloud-based solution integrates artificial
intelligence and advanced analytics. use meteorological and
sensor data to anticipate production, optimize fertilizer use,
and predict agricultural diseases.? Microsoft Azure IoT
Suite: Microsoft Azure IoT offers comprehensive IoT
solutions that incorporate big data analytics and cloud
integration, providing farmers with real-time decision help
while keeping an eye on climate, soil health, and agricultural
equipment.*’) Google Cloud IoT Core: With its sophisticated
machine learning capability, Google Cloud IoT Core is built
to manage extensive loT deployments. predictive irrigation
systems, satellite data integration, and extensive agricultural
monitoring. !

4. Machine learning methods

By facilitating data-driven decision-making, machine
learning (ML) techniques are essential to converting
traditional farming into smart agriculture.l'! Large volumes
of agricultural data, including crop photos, weather, soil
parameters, and sensor readings, are gathered in real time
through the integration of IoT devices.?’ Machine learning
models examine this data to find trends, forecast results, and
give farmers useful information.’! The following ML
techniques are frequently applied in agriculture:

4.1 ML methods

Decision Tree: A decision tree is a supervised learning
technique used for classification and regression. It separates
this information into branches based on feature values to
produce a model that resembles a decision tree. In smart
agriculture, crop types are forecasted based on information
from IoT sensors about temperature, humidity, and soil

6 | J. Smart Sens. Comput.,2025,1,25214

properties.¥l Analyzing data from optical sensors and the
surroundings to detect plant diseases or pests. providing
farmers with simple-to understand instructions for making
choice. It is very easy to understand and display, and it
performs well with both numbers and categories of
information.®) Random Forest: Random Forest is an
ensemble learning approach that builds many decision trees
and combines their findings (majority vote for classification,
average for regression) in order to improve accuracy.!®! Smart
agriculture is employed for utilizing multi-sensor data (soil,
weather, and irrigation) to forecast agricultural yield.
utilizing loT-enabled image sensors to classify plant health.
effectively managing big agricultural datasets with several
features.” It has a high accuracy and resilience to overfitting,
and it can handle big datasets and missing values
efficiently.’® Support Vector Machine: SVM is a supervised
learning method for regression and classification. It finds the
optimal hyperplane between measurements of different
classes with the biggest margin.”! Precision farming
optimizes fertilization and irrigation schedules, IoT sensors
detect anomalies in soil or water quality, and smart farmland
uses sensor or image data to categorize crops or predict plant
illnesses. It is effective in high-dimensional domains and
does effectively with small to medium-sized datasets.!'”) k-
Nearest Neighbors (k-NN): The simple instance-based
learning method known as k-NN classifies a sample based on
most of the class of the closest k u in the feature space. Using
data from adjacent field sensors, smart agriculture can
anticipate crop suitability or soil fertility, diagnose plant
illnesses or pest infestations by comparing them to known
cases, and monitor environmental conditions to inform local
farm management.!''l Logistic Regression: One statistical
technique for binary or multi-class categorization is logistic
regression. It uses a logistic (sigmoid) function to assess the
likelihood of a result.'”) Smart agriculture is used to classify
crop adaptability in various climatic zones, forecast
irrigation demands (yes/no) in precision farming, and
estimate the likelihood of crop disease development based on

[oT sensor inputs (temperature, humidity, and soil
moisture).?]

4.2 Deep learning (DL) methods

One statistical technique for binary or multi-class

categorization is logistic regression. It uses a logistic
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(sigmoid) function to assess the likelihood of a result.!'4]
Smart agriculture is used to classify crop adaptability in
various climatic zones, forecast irrigation demands (yes/no)
in precision farming, and estimate the likelihood of crop
disease development based on IoT sensor inputs
(temperature, humidity, and soil moisture).!”]

4.2.1 Convolutional Neural Network (CNN)

CNNs constitute specialized neural networks that are made
to recognize patterns and images. They employ fully linked
layers for classification and convolutional layers in order to
automatically learn features of space like as edges, textures,
and forms.[" From low-level features (edges) to high-level
features (plant disease patterns), CNNs automatically learn
hierarchical representations are employed in smart
agriculture to detect agricultural diseases. IoT cameras or
drones take pictures of leaves and fruit, and CNNs determine
if the crop seems healthy or sick.l'”? Additionally utilized for
the analysis of soil and leaf images, fruit grading and
harvesting, and weed identification.[!*!

4.2.2 Long Short-Term Memory (LSTM)

Recurrent neural networks (RNNs) of the LSTM type are
made to handle sequential and time-varying information.
Memory cells and gates (which include input, forget, and
return gates) that regulate what data is kept, updated, or
forgotten are used by LSTMs to address the vanishing
gradient problem, in contrast to conventional RNNs.["l They
are therefore quite good at identifying long-term
dependencies. Weather forecasting, yield for crop prediction,
irrigation management, and disease spread forecasting are all
done with LSTM in smart agriculture.??’ LSTMs can model
continuous time-series data from IoT sensors as well as
weather stations, such as temperature, humidity, and rainfall,
to predict future trends. Long-term temporal dependencies
are effectively handled by LSTM.?" Large datasets are
necessary for high accuracy.??

4.2.3 Autoencoders

Unsupervised neural networks called autoencoders are
designed to acquire effective data representations. In order to
reconstruct the original input with this constrained form, the
encoder compresses the input information to generate a latent
representation, and the decoder does the same. There is an
anomaly if the replication error is significant. Because of
this, autoencoders are helpful for dimensionality reduction
and anomaly detection.[?)! The autoencoder is utilized in
smart agriculture to identify faults in IoT sensors by
identifying anomalous signals from sensors measuring
temperature, nutrient levels, or soil moisture. Additionally, in
Early Warning Systems, Data Denoising, and Crop Anomaly
Detection.?

4.2.4 Hybrid CNN + LSTM
This hybrid model combines the temporal sequence learning

:‘o" G R Scholastic

of LSTM with the spatial feature extraction of CNN. First,
spatial patterns are extracted by CNN.[! In order to capture
temporal dependencies, LSTM then processes the above
characteristics over time."?! such as sensor grids or image
characteristics. The hybrid The CNN network + LSTM is
utilized in Smart Agriculture to monitor crop diseases over
time. CNN recognizes disease characteristics from photos,
while LSTM monitors the illness's progression over a period
of weeks or months.?? LSTM forecasts future water demand,
whereas CNN evaluates soil pictures for texture and
quality.?!! While LSTM predicts yield by modelling seasonal
patterns, CNN analyses drone photos of fields.?’! Integrating
temporal (time-series) and spatial (image) data is the aim of
Hybrid CNN + LSTM. Additionally, for multimodal
agricultural datasets, it is considerably more precise than
CNN or LSTM alone.B"

5. Agriculture sensors and devices

Sensors are crucial to agricultural IoT systems because they
gather data. The data that these smart gadgets gather is sent
to designated storage locations. The temperature sensor is
one of the most crucial kinds of sensors utilized in
agriculture.!

5.1 Sensors

Temperature Sensors: These devices track the temperature of
the air and soil. These are essential components of farming
systems based on I0T.2 pH Sensors: A sensor that detects
pH can be used to determine whether the soil has excessive
nitrogen or not enough nutrients. The pH of the soil is
measured by the second kind of sensor. Plants may grow
sickly, little leaves with brown patches if the soil is either
alkaline or too acidic.’¥ Soil Moisture Sensors: By
determining how much water plants require, these sensors
can enhance irrigation. There are two varieties of soil
moisture sensors: touching and non-contact.** Humidity
sensors: Plant leaves function best when they are not overly
wet, so it's critical to know the humidity level. Farmers can
determine when what and how ample water they ought to use
by monitoring humidity.’>] Weather sensors include a) a
rainfall sensor, which uses a rain gauge to detect the amount
of rain that falls, including the amount that falls in an hour. It
indicates the amount of rain that is falling right now.l*¢! b)
Wind Speed Tracker: A wind speed sensor indicates the
direction of the wind. The location affects its accuracy.?”

5.2 Evaluation of IoT and drone-based systems: pros,
cons, accuracy, and energy challenges

Nutrient and Cameras (Drones): These devices measure
phosphorus, potassium, and nitrogen (NPK), which is useful
for determining when to harvest, enhancing security, and
assessing crop health. Blue, red, and green RGB camera
sensors are able to record visual information that is then
analysed by intelligent algorithms.¥) Farmers may determine
the type and amount of fertilizer to use by measuring the
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Fig. 5: Workflow: sensor data — ML model — prediction — farmer alert.

Table 3: Comparison of ML/DL models in agriculture.

Model Input Features Dataset Used Accuracy (%) Pros Cons
Support Vector Leaf images, soil Plant Village, 85-92 Works well with Struggles with large
Machine (SVM) properties, weather ~ UCI datasets small datasets, good  datasets, tuning is complex
data for classification
Random Forest Soil nutrients, Kaggle crop yield  88-94 Handles noisy data,  Less interpretable, slower
(RF) temperature, dataset, regional less overfitting with very large data
rainfall, crop yield  agricultural data
records
k-Nearest Crop disease Plant Village, 80-87 Simple, effective for ~Computationally expensive,
Neighbours (k- images, sensor data  field survey data small datasets sensitive to noise
NN)
Artificial Neural Weather, soil Custom farm 90-95 Learns complex Requires large datasets,
Network (ANN) moisture, yield datasets, FAO relationships, “black-box” nature
history data adaptable
Convolutional Crop/leaf images Plan Village (50k  95-99 High accuracy in Needs large label datasets,
Neural Network for disease images) image recognition, high computational power

(CNN) detection

automates feature
extraction

NPK levels, which indicate how nutrient-rich their soil is.
Energy concerns, accuracy, and pros and disadvantages.
Benefits of smart agriculture: There is a noticeable loss in
parameters when a fully connected layer is used in place of
the convolution layer.?”! By optimizing the margin amongst
categories through the use of kernel functions, it makes
effective data grouping possible.*! Intelligent pest
management, fertilization, and irrigation cut waste and boost
productivity. Predictive analytics (using ML) and real-time
monitoring (using sensors) aid in resource optimization and
agricultural output growth.*!

8| J. Smart Sens. Comput., 2025, 1, 25214

Drawbacks: Scaling large datasets is often difficult. Having
overfits with too many characteristics, making it difficult to
comprehend the complex relationship between features.!*?
Occasionally, results from inaccurate data sets may
contradict one another To use and comprehend smart
technology, farmers or employees could require training loT
systems need frequent maintenance and are susceptible to
failure in severe settings (dust, rain, etc.*¥] Traditional
agricultural expertise and resilience in the event of a system
collapse may be diminished by reliance on technology.*+!
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5.3 Energy issue

Data Preprocessing: Exploratory Data Analysis (EDA), was
used using Jupyter Notebook modules like Pandas and
NumPy to automate this information cleaning procedure.
Model Training: Characteristics like temperature, humidity,
rainfall, soil pH, and NPK levels are all included in the
training dataset.!*’!

Model evaluation: The many evaluation criteria used to
gauge the effectiveness of the models in use are presented in
this section. It is a crucial stage in the creation of models and
is frequently used to show how reliable a model is in terms
of performance.™!

Data Source: A sampling of soil and historical climatic data
from farms along the Wannune axis served as the study's data
sources. Among the factors are soil pH, humidity, rainfall,
phosphorus (P), magnesium (K), and nitrogen (N).[*”! Data
collection: Temperature, humidity, light levels, moisture in
the ground, and other pertinent factors are among the many

variables that the sensors are responsible for gathering data
on.8

6. Role of IoT in agricultural management

6.1 Crop monitoring

IoT aids in monitoring the soil's concentrations of vitamins,
potassium, phosphorus, nitrogen, and other minerals.
Farmers may use this to determine when and how much
fertilizer to apply.[*’ This ensures that crops get the nutrients
they need to grow healthily and produce high-quality food
without requiring too much or too little fertilizer. It also
reduces trash and helps the environment. IoT also keeps track
on climatic factors like temperature, light, and moisture to
give farmers constant updates on their crops.*"

6.2 Irrigation management
Smart irrigation uses Internet of Things (IoT) sensors to track
soil moisture, weather, and other variables. Weather

Table 4: Agricultural sensors.

Application Method

Features and Benefits

Precision farming resource waste

10T sensors track plant-level data; ML gives

Boosts yield, reduce

targeted input (fertilizer, pesticide)

Yield Prediction

IoT stations collect real-time local weather

helps in planning

data; ML improves forecast accuracy

Weather Forecasting

IoT wearables track animal health; ML

better planning for planting

detects illness or stress patterns.

Livestock Monitoring

10T cameras scan fields; ML identifies and

Improves animal health

locates weeds reduces herbicide use

Weed Detection IoT tracks harvest, storage, and transport; ML enables targeted weeding
predicts demand and spoilage risk
?Database E.l;:_l
-J | Farmer/ Owner
ra —
Gateway N\« ==
Server Controller

Soil Moisture
Sensor

Soil Ingredient
Sensor

Ultra Violet
Sensor

Air Humidity
Sensor

Temperature
Sensor

Fig. 6: Application of IOT and machine learning in agriculture with sensor placement in crop fields monitoring.
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conditions, water in the soil, and even sunshine are all
measured by these sensors. The data is wirelessly received
by a central system, often situated in the cloud.>"

6.3 Precision livestock farming

Crop management in farming involves the use of drones,
Internet of Things sensors, and data analysis. photos of
plantings are taken by drones fitted using specialized
cameras and sensors. These photos are then processed by
advanced algorithms to detect problems like pests or diseased
crops. By helping farmers make well-informed decisions,
this lowers costs and boosts agricultural production.>?!

6.4 Supply chain and storage monitoring

Real-time data is transmitted to a central network from
connected gadgets in packaging and storage locations.’**!
This provides all parties with comprehensive information on
the location and state of the items. IoT, for instance,
maintains fruits and vegetables at the proper humidity and
temperature while they are being transported. Additionally, it
offers real time tracking, which improves the efficiency of

the supply chain by assisting in the movement of
commodities from fields to factories and ultimately to
consumers.[4

7. Challenges and limitations

7.1 Technical

Connectivity is one of the major challenges in implementing
[oT in agriculture, as reliable system performance depends
on stable internet access, particularly in remote rural areas
where network infrastructure is often weak.!>* This makes it
hard to send data and check on things in real time.% To fix
this, building better internet infrastructure in those areas can
help create a system that reliably sends and receives data.l*”!

Security and privacy of data: Data security becomes
increasingly crucial as more is gathered. Data that has been
compromised may be taken, altered, or distributed without
authorization. Farmers may suffer financial losses,
reputational harm, and even legal problems as a result of
this.’81 To prevent this, the risk can be decreased by
implementing measures such data encryption, establishing
stringent access controls, and maintaining security.!

Table S: Applications of IoT and ML in agriculture.

Challenges Solutions

Unpredictable weather
forecasts
Water scarcity
water crops need

Crop diseases and pests

ML models and IoT weather stations — better, more accurate local weather

Smart irrigation systems — loT soil sensors and ML determine exactly how much

Drones with image recognition — ML detects signs of disease or pests early from

data collected by IoT devices

Overuse of fertilizers and
pesticides amounts to use
Low yield or productivity

and harvesting.

Precision farming — [oT monitors soil and crop conditions; ML suggests the best

Yield prediction — ML analyses past data and sensor info to help with planting

Data Collection

T i
=== Data Processing : i SVM I'
__Crop DatVaA " "‘ e ,‘
= \ = | | KNN |-
Temperature , Ny
Humidity, Ph, Rainfall, Y e M
Nitrogen,
Phosphorous, l LR ’
_Potassium _ D !
A If
T '| CART |-
ey |
Test 1._::
Data e I."l
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Fig. 7: Smart agriculture workflow (farm sensors — cloud/ML — farmer mobile app).
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Interoperability and standardization: It can be hard to make
sure different IoT devices and systems from different
companies work together without problems. For this to work,
the industry needs to agree on common standards and work
together. "]

Scalability: By automating processes that would normally
need human labour, IoT in agribusiness helps decrease waste,
minimize environmental impact, and save time and money./*"

7.2 Environmental

Adoption and awareness: Getting farmers to use IoT can be
tough. Some are hesitant to invest in new tech because they
don’t understand the benefits, don’t trust the technology, or
don’t have enough information to decide. So, creating
programs that teach farmers about the benefits of IoT and
help them overcome their doubts is important.®”l Smart
Grids, Microgrids, and Renewable Energy: Due of sensors,
navigational systems, and data transport, smart farming
requires a lot of electricity. Using alternative sources of
energy helps address persistent power problems in rural
places. Local energy systems include microgrids and smart
grids. Additionally, new energy storage systems may store
heat and power, increasing the efficiency of energy
consumption.'®’! Environmental and Sustainability Concerns:
IoT devices that run on batteries need to be replaced or
charged often, which costs money and creates a lot of
electronic waste. Solar-powered IoT devices are being
developed to help, but they are still expensive and don’t work
well in areas with little sunlight. Also, broken or faulty
sensors need to be replaced, which adds to costs and e-waste.
Making IoT devices more durable, weather resistant, and
recyclable is important to reduce their environmental
impact.[*l Technology Accessibility: Using cutting-edge
technology might be challenging in some areas due to a lack
of new tools and reliable internet. Farmers find it challenging
to employ intelligent agricultural practices as a result.l®! For
these techniques to gather and exchange sensor data, high
quality equipment and a fast internet connection are required.
Farmers in areas without these find it more difficult to take
advantage of these advancements as they are unable to
properly utilize the newest farming equipment.[® Regulatory
Compliance: Farmers using precision farming have to follow
many rules set by national and municipal governments
regarding environmental protection, land management, and
data use. These rules can make things more complex and
expensive.l*” Sticking to all the rules about data, how land is
used, and how the environment is treated can be a big
challenge, adding more time and cost for farmers using
precision farming. It helps maintain transparency by

recording farming practices, fertilizer use, and pesticide
applications in line with regulations. Compliance also builds
trust among consumers and policymakers, supporting
sustainable and legal agricultural practice.*®!

7.3 Social/economic

Farmers may benefit from using Technology in farming by
producing higher-quality, more transparent, and sustainable
goods.®l This makes companies stand out from the
competition, satisfies consumer demand for environmentally
friendly items, and raises the price at which they sell their
goods. Adopting IoT gives farmers a significant opportunity
to increase revenue and set their goods apart in a competitive
market, as consumers' concerns about environmentalism and
transparency grow.®7!1 JoT helps farmers save money by
managing resources better and wusing predictive
maintenance. With real-time data, they can run their farms
more efficiently, cut down on waste, and boost their profits
over time.[”!

8. Emerging technologies in smart agriculture

8.1 Edge AI and federated learning for local farm data
analysis

Drones are increasingly being used in farming as IoT and
connectivity technologies advance.’ Drone abilities in
agriculture could be greatly improved in the future by Al. Al
may be used by drones to help with tasks including
agricultural inspection, water management, crop health
monitoring, planting, crop spraying, and soil analysis.l""
Tracking agricultural conditions is made easier by drones
fitted with a variety of sensors, including ordinary cameras,
thermal photos, 3D images, and multispectral photography.
Disease detection, plant density measurement, and soil health
monitoring.[’

8.2 5G/6G for real-time farm monitoring

In order to influence the direction of agriculture in the future,
it is crucial to encourage global collaboration and the open
exchange of data in the area of precision farming."” The goal
of this cooperative is to create a comprehensive yet accurate
knowledge database that will provide agricultural decision-
makers with a wealth of helpful information.’! Through
international collaboration, farmers may gather data from
diverse regions. Combining this worldwide expertise yields
a useful resource for enhancing precision farming
techniques, honing forecasts, and implementing sustainable
practices over a wider region. This ultimately supports the
global goal of ensuring food security and promoting
agriculture that is better for the environment. [’

Table 6: Challenges vs solutions in smart agriculture.

Challenges Solutions

Unpredictable weather

Water scarcity

Crop diseases and pests
IoT devices

ML models and IoT weather stations — better, more accurate local weather forecasts
Smart irrigation systems — [oT soil sensors and ML determine exactly how much water crops need
Drones with image recognition — ML detects signs of disease or pests early from data collected by
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8.3 Al enabled drones for precision spraying

Drones are increasingly being used in farming as IoT and
connectivity technologies advance. Drone abilities in
agriculture could be greatly improved in the future by AL
Al may be used by drones to help with tasks including
agricultural inspection, water management, crop health
monitoring, planting, crop spraying, and soil analysis.[*"
Tracking agricultural conditions is made easier by drones
fitted with a variety of sensors, including ordinary cameras,
thermal  photos, 3D images, and multispectral
photography.l®'l  Disease  detection, plant density
measurement, and soil health monitoring./*?

8.4 Blockchain for food supply chain traceability

Smart farming could be revolutionized by these three
technologies. The sustainability, effectiveness, and
transparency of farming could all be enhanced by these
techniques.® One problem is that most contemporary
artificial neural networks depend on the use of cloud
services, which necessitates frequent internet connections
and substantial data transfers.®* Edge Al processes data
directly on agricultural machinery, which is faster and more
reliable, especially in areas with poor internet.®s] Drones and
Edge Al-powered sensors can examine crop images, detect
pest problems, and adjust watering schedules without the
need for extra data processing. Remote farms benefit from
this speedy decision-making.’*¢ Edge Al will be essential to
automated precision farming as Al technology becomes more
effective and reasonably priced.®” A novel approach to
enhancing supply chain transparency and trust is the tracking
of agricultural products from start to finish using blockchain
technology.*®! From the agricultural process to the consumer,
blockchain documents and safeguards every phase of a
product's lifecycle. This lets consumers know where their
food comes from and helps verify whether products are
sustainable, organic, or properly traded.®! It quickly
identifies possible contamination areas during a recall,
increasing consumer confidence and helping to guarantee
food safety.® This protects public health and benefits the
entire food industry. In summary, the technology of Bitcoin
is a powerful tool that helps create a future where openness
is at the heart of agriculture. Accountability and trust.!

8.5 Multi-modal prediction

By improving resource efficiency and minimizing
environmental effect, precision farming techniques may be
adapted for implementation in metropolitan and vertical
farming, which has several advantages.?! Utilizing data-
driven strategies in tiny areas reduces the total environmental
impact, conserves water, and makes better use of available
resources. This strategy promotes sustainable practices
while satisfying the rising demand for locally produced, fresh
food. All things considered, adapting precision farming for
vertical and urban agriculture is a clever strategy to satisfy
consumer demand for locally grown, environmentally

12 | J. Smart Sens. Comput., 2025, 1, 25214

friendly products.®*

9. Conclusion

Farmers may increase efficiency, production, and
sustainability by employing smart irrigation, precision
farming, supply chain management, smart greenhouses,
animal tracking, agricultural drones, pest and disease control,
and crop and soil monitoring. The review's key findings
demonstrate the manner in which IoT technology is
significantly altering agriculture. Accurate real-time
information greatly boosts output and helps keep crops from
withering. Farmers can remotely monitor and control crops
in real me thanks to IoT technology. All of the crucial
farming-related updates and statistics are available on the
Blynk app. All farming operations are fully protected by this
technology, increasing output while requiring less labour.
Combining IoT with Machine Learning gives a strong chance
to boost productivity, sustainability, and decision-making in
farming. However, there are still big challenges, like high
costs, limited internet in rural areas, and low understanding
of technology among farmers. At the same time, there are
great opportunities, such as precision farming, early disease
detection, and climate-friendly solutions that can change
how food is produced. Still, there are key research areas that
need more attention—Ilike creating affordable and scalable
systems, ensuring data can be shared easily, and making tools
that are easy for farmers to use. Fixing these gaps is
important to make smart farming accessible, dependable, and
effective around the world. These technologies offer
powerful capabilities to increase production, improve
resource usage, and lessen environmental damage. There are
still issues, though, such as expensive setup fees, spotty
internet in rural locations, and farmers' lack of technological
expertise. However, there are also opportunities that are
transforming farming, such as automation, early danger
identification, and precision farming. Important research
topics including developing solutions that function in local
settings, standardizing data, and constructing cost-effective
systems require additional focus in order to fully realize this
promise. Building robust, effective, and equitable food
systems for the future requires addressing these issues. Farm
Beats is a well-known and affordable Connectivity of Things
(IoT) solution for farming. It makes use of TVWS, an
affordable long-range technology, to support high-speed
sensors. Farm Beats' weather-sensitive, sunlight-powered
wireless device base station and sophisticated gateway
ensure that services are available both globally and offline.
The drone's battery life is further increased by its enhanced
path planning algorithms. The system is already being used
by farmers for three purposes: storage monitoring, animal
monitoring, and precision farming. Two farms have been
used to test the technique. In order to develop more Farm
Beats platform apps in the future, we are working with
farmers. Technological speaking, there is a lot of promise for
improving the scalability and reliability of systems with
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developments in power efficient detectors, Ambient Al, and
cryptocurrency for secure data processing. However, there
are still a lot of unanswered questions. The lack of practical
testing for Al-based systems for identification in complex
environments, such intercropping or agroforestry, is a major
issue, especially in tropical and subtropical areas.
Furthermore, the absence of open-source, vendor-neutral
frameworks limits the manner by which data may be used,
analysed, and shared across national borders, particularly in
middle- and low-income nations. As networks with Edge Al
and driverless expand, many setups continue to face ethical
and cybersecurity issues such as information privacy,
structure transparency, and system integration into smart
farming systems. In conclusion, the complete potential of
machine learning and Internet of Things (IoT) in agriculture
requires interdisciplinary cooperation, ethical application,
and fair access. Addressing the current issues will be
essential to building robust, flexible, and sustainable food
systems for centuries to come.
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